
Canadian Journal of Pure and Applied Sciences
Vol. 15, No. 3, pp. 5297-5305, Oct 2021
Online ISSN: 1920-3853; Print ISSN: 1715-9997
Available online at www.cjpas.net

LOGIC GATE ARITHMETIC AND QUATERNIONS

Christopher C. O’Neill

Cataphysics Group, Recess, Old Connaught Ave. Shankill, Co. Dublin, Ireland

ABSTRACT

A new method for Logic Gate Arithmetic is proposed allowing sets to be added, subtracted, multiplied, and divided in an
novel way leading to an alternate and expanded appreciation of the Set Theory. An additional eleven Logic Operators are
derived from the known operators: AND, OR, NOR, XOR, and XNOR, and their relationships described. Utilizing the
principles of Dimensional Gate Operators (DGO), the new operators are shown to be directly related to dimensionality,
both higher and lower, and the relationship to the Quaternions is given preliminary treatment.

Keywords: Logic Gate Arithmetic, set theory, dimensional gate operators, boolean algebra, quaternions.

INTRODUCTION, BACKGROUND, AND
TERMINOLOGY

Logic Operators are an important part of modern
Computer Systems and Set Theory. There are six primary
Logic Gate Operators; AND, OR, NOR, XOR, XNOR,
and NOT, as they are traditionally perceived. More
accurately, it can be said that there are only 3 (AND, OR,
and XOR) with the NOT operator being more of a
decorator acting on these to create the other 2 (anti-
operators) for a total of 5.

O’Neill (2021) explored the possibility that these Logic
Operators were incomplete and added 11 more, for a total
of 16. Approximately seven months after writing this, the
author became aware of a video by N.J. Wildberger called
“Implication and 16 logical operations” and realized that
Wildberger had arrived at the same conception in 2018
(https://www.youtube.com/watch?v=XkqmuUg_yFs).
Wildberger claims to have derived his new set of logic
operations in a formal algebraic sense using the Boolean
Algebra (Boole, 1847) and proceeds to name a selection
of them in relation to the Stoic Logic of Modus Ponens
and others in relation to their own internal properties.

For instance, the Logic or Truth table that corresponds to
the binary number ‘0000’ (read right to left), he denotes
as ‘0’ or ‘zero’. It’s counterpart ‘1111’ is therefore ‘1’.
‘IMP’ stands for implication and OT1 stands for ‘Original
Term’.

Once a naming convention is in place, it matters little how
it got there. However, these new logic operators lack
Boolean Algebra symbols, like ‘^’, ‘V’, ‘∆’, and ‘!∆’

(Bocheński, 1948; Roegel, 2002). To counteract this, a
new naming convention will be outlined in this theoretical
work. The author developed this method, before realizing
that Wildberger had already given names to all the logic
operations.

Fig. 1. Wildberger’s 16 Logic Operations, which are
almost identical to the Logical Connective operators
which have been in use and development for over a
hundred years.

In any case, such naming conventions are not too
concerning, especially in early stage research such as this.
After all, the XOR and XNOR logic gates are sometimes
called EOR and ENOR, without much complication, and
there are numerous variations used for symbols
throughout the literature, including ‘!’ and ‘¬’ for NOT,
etc. (Roegel, 2002).

More confusingly, however, is applying the binary
numbers to the Truth Tables. Binary numbers are usually
written horizontally, whereas Truth Tables are nearly
always vertical (see in Appendix 1). When compiling
Wildberger’s operations into the tables shown in Figure 1,
it seemed necessary to list the operators, as though their
binary numbers are being read from ‘right to left’. To
avoid headaches, it will be necessary to continue with this
convention. In this paper, all 16 Logic Operators will be
derived from the original six.

Corresponding author e-mail: chris.ozneill@gmail.com

Canadian Journal of Pure and Applied Sciences 5298

Wildberger does not reveal how it was that he developed
his version of the 16 Logic Operators. But given their
similarities to the Logical Connectives (Bocheński, 1948),
as well as Wildberger’s extensive knowledge on the
subject, it would appear likely he was aware of them in
advance. Even so, the author is not aware if this would be
classed as an act of plagiarism, given that the information
in the form of an online video presentation, as opposed to
a scientific paper.

More on logic
The binary numbers ‘0000’ to ‘1111’ can be used to
represent all 16 of the Dimensional Gate Operators
(DGO). However, some of these operations don’t appear
all that logical. To alleviate this concern, the author
decided to attempt to derive the other eleven operators
from the original five.

Fig. 2. The other two tables: “A rose by any other name?”

The first step is to combine the known logic gates; AND,
OR, XOR, NAND, XNOR, and NOR to see if they can
generate any knew terms. XOR can be obtained via the
OR operator acting on AND and OR:

((^) V (V)) = ∆

However, this is obvious and doesn’t lead us out of the
recursive loop and into the unknown parts of the DGO.
Similarly, ((^) ^ (V)) = ^. It is easy to see how this
method will lead us in circles.

Taking a step back and reexamining the Truth Tables for
these operations, there are clearly two more ‘binary’
numbers present in each of the tables. Which are: ‘1010’
and ‘1100’. These numbers are equivalent to Wildberger’s
OT1 and OT2. In terms of Binary Connectives, these are
known as Proposition P and Q. However, this author
identified them as RIGHT (or ‘R’) and LEFT (L), as in
Right and Left Multiplication. Applying the NOR
operator, !R (NOT RIGHT) and !L (NOT LEFT) are
easily obtained. From here, we can get to a new Logic
Operator; ‘0100’, which is made from the combination of
Δ and !L:

((∆) ^ (!L)) = 0100

It was called 0100 or ‘^U’ (meaning AND UP), because it
is similar to ‘^’ (1000) shifted ‘up’ one space. The NOT
version of this gate is 1011 giving us; ‘!^U’ (NOT AND
UP). Similarly, !V shifted down one space gives us 0010,
so this is ‘!VD’ (NOR DOWN).

Therefore, ‘!VD’ is equal to 1101. Once again, the Unary
Connectives denotes 0010 and 0100, as the NIMP1 and
NIMP2, which is identical to Wildberger’s notation and
more indication that his work is at least derivative.
Together with the NOT versions of these two new Logic
Operations, we are able to fill 14 of the 16 arrangements
in the tables shown in Figure 3.

Fig. 3. All 16 operations with their names and symbols.

In the process, ‘0000’ and ‘1111’ were named: i.e. “N”
and “!N” respectively (standing for “NONE” and “NOT
NONE”). These can equally be written as “NOT ALL”
(NA) and “ALL” (A). Both ‘None’ and ‘A’ are already
symbols in the Boolean Algebra, so “NONE” (N) and
“NOT NONE” (!N) are used instead. Getting to ‘N’ and
‘!N’ from any of these gates is a simple matter. We only
need apply one gate together with its NOT version:

((V) ∆ (!V)) = N

The reverse is given by:

((!V) ∆ (!V)) = !N

Now all 16 Dimensional Gate Operators and their
Boolean Algebra symbols are in place, their relationships
can be further explored and they can be written in terms
of one another. For example, all these statements are
TRUE:

((R) ∆ (L)) = ∆((!N) !∆ (L)) = !L(!VD) !∆ (L) = !^
((∆) ^ (!L)) = ^U

This means that the last equation in this list can equally be
written as follows:

((R) ∆ (L)) (!(!VD) !∆ !(L)) ((!N) !∆ (L)) = ^U

To make these relations more easily digestible, the author
took the liberty to organize all this information in the
following tables shown in Figures 4 to 19 below (the
Python code to generate these tables is in Appendix 2).

Fig. 4. N : [0000].

O’Neill 5299

Fig. 5. !V : [0001].

Fig. 6. !VD : [0010].

Fig. 7. !R : [0011].

Fig. 8. ^U : [0100].

Fig. 9. !L : [0101].

Fig. 10. Δ : [0110].

Fig. 11. !^ : [0111].

Fig. 12. ^ : [1000].

Fig. 13. !Δ : [1001].

Fig. 14. L : [1010].

Canadian Journal of Pure and Applied Sciences 5300

Fig. 15. !^U : [1011].

Fig. 16. R : [1100].

Fig. 17. VD : [1101].

Fig. 18. V : [1110].

Fig. 19. !N :[1111].

The basic rules of arithmetic; like addition, subtraction
and/or multiplication and division can easily be applied to
these gates. For instance, R Δ L can be rewritten to
produce (!^)) as follows:

R ∆ L = ∆
(R) ∆ (∆) = ((VD) ∆ (!^))

(R) ∆ (∆) / ((VD) ∆) = (!^)

Another more convoluted example, this time rewriting
((∆) ^ (!L)) for (VD) is:

(∆) ^ (!L) = ^U
((∆) ^ (^U)) V ((∆) V (^U)) = ^U

!(((∆) ^ (^U)) V ((∆) V (^U))) = !^U
(!∆)^(!^U) V (!∆)V(!^U)/(!∆) ^ = VD

Later, these methods will be applied to the Set Theory, as
a whole.

Some notable gates
In the previous research paper, operators like ∆ (XOR)
and !∆ (XNOR) were both encountered (O’Neill, 2021).
Each of these represents the rules of Real Number
Arithmetic and Complex Arithmetic, according to the
DGO. This shift in how to do arithmetic transports us
from the ostensibly 1-2 dimensional lines of the Real
Numbers and into the 2-3 dimensional realm of the
‘Complex Plane’.

Unlike the numbers of the Complex Plane, however, there
are no algebraic numbers here. This is because (–1)1/2
(the imaginary unit, i) is equal to ±1 in !Δ. Therefore, they
are simply the ordinary numbers with a different
arithmetic rule set. The reader might be tempted to think
that Δ also governs the rules of the Quaternions and
Octonions (Hamilton, 2000). However, this is not the
case.

One important feature of the Quaternions is that they are
non-commutative; that is A(B) =/= B(A). This attribute is
seen in the DGO in places like !VD, !R, !^U, and VD,
where A(-B) =/= B(-A). Quaternions are governed by a
mix of !VD and ^U logic, because they are non-
commutative for different signed quaternions, whilst
retaining the !Δ rule set of the imaginary numbers, when
the signed values for i, j, k are the same:

i2 = j2 = k2 = – 1

ij = k, ji= – k
jk = i, kj = – i
ki = j, ik = – j

The Quaternions are made from two groups of !VD and
one of ^U. This asymmetry allows for the loop to be
closed and further explains why these higher-dimensional
algebras can only be order 2n. Below there are three tables

O’Neill 5301

that correspond to the following (left to right): ∆, ^U, and
!VD.

Dimensional spaces
Returning to Figures 4 to 19 (i.e. sets 0 to 15), it is
apparent all of them can fit together like jigsaw pieces.
For instance, it is clear that Figures 5, 6, 8, and 12 (i.e.
sets 1, 2, 4, and 8) form a set that can be called ‘Set B’.
Similarly, we can make ‘Set C’ from Figures 11, 15, 17,
and 18 (i.e. sets 7, 11, 13, and 14). The horizontal and
vertical lines appear to make another set, ‘Set D’ (Figures
7, 9, 14, and 16). That just leaves the final four graphs:
Figures 4, 10, 13, and 19, namely set {0, 6, 9, 15} or ‘Set
A’. All the sets are shown schematically in Figure 20.
There is a distinct pattern emerging in how these sets are
dispersed across the entire binary number line, here
represented in their decimal form.

Fig. 20. All four sets: A (blue numbers), B (red), C
(green), and D (black). This pattern explains the
frequency of the NOT values, as they are represented in
the DGO.

The first composite graph (Figure 21) shows the domains
of N (in the bottom left-hand corner), ∆ immediately
above that, !∆ in the lower righthand corner, and !N in the
top right. What matters here is not the order, so much, as
the grouping and what it reveals about the connectivity of
the Logical Connective space. Set A can be rewritten as
{N, ∆, !∆, !N}, which stands for the paths between
Dimensions 0, 2, 3, and 1, respectively. To understand
this, look at our Quaternion logic gates: ^U and !VD.
Figure 22 shows Set B.

Fig. 21. Set A = {0, 6, 9, 15} or A = {N, ∆, !∆, !N}.

Fig. 22. Set B = {1, 2, 4, 8} or B = {!^, !^U, !VD, !V}.

If we multiply these terms by ¬Δ (the Imaginary rule set)
we obtain (!VD) ¬Δ (!^U) = Δ (our Real number logic).
This shows the path by which Quaternions collapse down
into the rule set of both the Imaginary and Real numbered
spaces of dimensions 2-3. We can then continue this
process, in the usual manner, multiplying (Δ) !Δ (!Δ) and
(Δ) Δ (!Δ) to obtain the dimensions beneath them as
follows:

(∆) !∆ (!∆) = N
(∆) ∆ (!∆) = !N

One possible conclusion is that N and !N refer to
dimensions 0 and 1, respectively. In this sense, the Real
Numbers and Imaginary Numbers live in Set A, along
with dimensions 1 and 0. Whereas the Quaternions live
jointly in Sets B and C, along with some other more
traditional logic gates. The Octonions, Sedenions, and
(potentially) other higher dimensional spaces exist
scattered among the other sets, although this is something
that must be investigated further.

While this way of thinking about logic gates can provide a
method for travelling from one rule set (i.e. dimensional
space) to the other, it should not be taken too literally. In
one sense, applying the ∆ or !∆ rule set to the Quaternions
does not lead to ∆ or !∆ but rather to hybrid spaces; the
Real Quaternions and the Imaginary Quaternions, and
neither of these two systems cancel out to Dimension 0
when summed in ∆. More on this in up-coming research.

Fig. 23. Set C = {7, 11, 13, 14} or C = {V, VD, ^U, ^}.

Based on the arrangements of the graphs in Figure 21, it is
possible to see the placement beginning in the lower left-
hand corner and proceeding in a zigzag fashion to the
upper-right. The graphs in Figure 22 go in the reverse
direction and the pattern is repeated in the next two
graphs in Figures 23 and 24.

Canadian Journal of Pure and Applied Sciences 5302

Fig. 24. Set D = {3, 5, 10, 12} or D = {!R, !L, L, R}.

Using the pattern of Figure 21 as the ‘base arrangement’,
Figures 21, 22, 23, and 24 can be arranged into a single
graph (Figs. 25, 26, and 27). But note there are 16!
possible arrangements, so care must be taken when
choosing an arrangement.

Fig. 25. The preliminary grouping of the sets.

Fig. 26. The final grouping.

Fig. 27. A more tiled version of Figure 26.

It can be deduced from the lack of connectivity between
the different regions that a more accurate arrangement is
possible. We shouldn’t expect to see such harsh
delineating lines from the interrelated sets. Earlier it was
stated that the Quaternions and the Imaginary Quaternions
follow the rules laid out in Set B, while the Real
Quaternions are sitting in Set C, which obviously cannot
be right. If the Real Quaternions are moved into Set B
with the other Quaternions, this forces all the commonly

known logic gates: ^, !^, V, and !V together, which is a
much neater result.

Moreover, there is a much greater connectivity between
the different regions. Given that this has served as a
useful vehicle to explain some of the relationships
between the Reals, Imaginary, Quaternions, and Logic
Gates, it may be worthwhile exploring this line of inquiry
further.

Set Theory Arithmetic
It is possible (at least in principle) to divide and multiply
set operators together. And it is also possible to apply
these kinds of operations to the actual sets of Set Theory.
Unlike traditional methods of arithmetic with sets, where
(for instance) the elements of one set are divided into
another, here the operators acting on the sets will be
divided.

Using the DGO methods on Set Theory will advance new
ways to get from one partition of a group of sets to
another and will lead to operations, which were not
previously possible under the former laws of the Boolean
Algebra.

To begin with, it is not clear why this should this be so.
After all, the current operators already cover all aspects
and combinations of Set Theory. But when it is recalled
that the !VD operator governs the arithmetic of the
quaternions, this portends the possibility of doing Set
Theory in higher order dimensions.

Quaternions are known to be indispensable for describing
some aspects of Quantum Mechanics, and these extra
Logic Gates simply extend the number of dimensions
available to work with. This also forms the basis of the
Dimensional Gate Operator Standard Model, which is
further developed in (C. O’Neill, “Dimensional Gate
Quaternion Multiplication, Quarks & Polyhedra” DOI:
10.13140/RG.2.2.22968.57601/1; “Construction of the
2nd and 3rd Generation Quark Particles in the Standard
Model” DOI: 10.13140/RG.2.2.20228.35202, as well as
the overview: “Making Sense of the Standard Model”
DOI: 10.13140/RG.2.2.34132.12163/1). Essentially, these
operators can be used to describe sets of these particles
via the rules of the 4-dimensional space (4D space) in
which they live. Alternatively, 4D Set Theory might find
application in the perplexing world of Quantum
Computing, where a bit can be a ‘1’ and ‘0’ at the same
time.

To begin with, a simple example with sets A and B is as
follows:

(A ∆ B) ^ (A !L B) = (A ^U B)

O’Neill 5303

This operation would correspond with the following Venn
Diagrams:

and equals to:

A slightly more complex operation would be the
following:

(A R B) ∆ (A !∆ B) / (!VD)!∆ = (A !V B)

This equals to

An important aspect of the above two equations is they
both feature noncommutative logic gates, specifically: !L,
R, and !VD. This means that different outcomes for the
equation would be expected depending on which set we
choose to be on the right and which appears on the left.

Since sets have no orientation in space and since either
one can be on the ‘left’ or on the ‘right’, this poses
something of a problem, especially as the set arithmetic
moves into higher dimensions. Or at least it would be a
problem, if it were expected to form a closed space
algebra, but as we shall see in the follow-up preprints and
research papers, creating closed field algebras might not
always be the best approach.

CONCLUSION

The Dimensional Logic Gate Operators have the potential
for some very unusual and unexpected applications. They
can find application in computer circuitry, set theory, and
Boolean algebra, as well as Quantum Computing, 4-
dimensional (and higher) Set Theory, and Set Theory
Arithmetic.

REFERENCES

Bocheński, JM. 1948. Précis de logique mathématique.
F.G. Kroonder, Bussum, North Holland.

Boole, G. 1847. The Mathematical Analysis of Logic,
Being an Essay Towards a Calculus of Deductive
Reasoning. Cambridge: MacMillan, Barclay, and
MacMillan; London: George Bell, UK. pp 82.

Hamilton, WR. 2000. On Quaternions, or on a new
system of imaginaries in algebra. The London, Edinburgh
and Dublin Philosophical Magazine and Journal of
Science. XXV-XXXVI (3rd Series). pp 92. (Hamilton,
WR. 1847. XXXVI. On Quaternions, or on a new system
of imaginaries in algebra. Proceedings of the Royal Irish
Academy. Philosophical Magazine Series 3. 31(207):214)
DOI: https://doi.org/10.1080/14786444708645826.

O’Neill, CC. 2021. Reimagining complex numbers.
Canadian Journal of Pure and Applied Sciences.
15(2):5261-5268. DOI:
https://doi.org/10.13140/RG.2.2.26666.44480/1.

Roegel, D. 2002. A brief survey of 20th century logical
notations. [Research Report] LORIA – Université de
Lorraine, France. ffhal-02340520 (HAL Id: hal-
02340520) https://hal.inria.fr/hal-02340520.

Received: June 28, 2021; Revised: August 18, 2021;
Accepted: Sept 30, 2021

Copyright©2021, Christopher C. O’Neill. This is an open access article distributed under the
Creative Commons Attribution Non Commercial License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Canadian Journal of Pure and Applied Sciences 5304

Appendix 1.

The 16 tables.

Fig. A1.1. From top left: N, !V, !VD, !R, ^U, !L, ∆, !^, ^,
!∆, L, !^U, R, VD, V, !N. The colour-coding here pertains
to the different sets: A = Red, B = Green, C = Blue, and D
= Yellow. The Quaternions are created from !VD and ^U
and the Real Quaternions are created from !^U and VD.

Appendix 2.
The Python codes for the generation of Figures 4 to 19.

import plotly
import plotly.graph_objs as go
import plotly.figure_factory as ff
import numpy as np
import copy

gates = {'0000':'N', '0001':'!V', '0010':'!VD', '0011':'!R',
'0100':'^U', '0101':'!L',
'0110':'∆', '0111':'!^', '1000':'^', '1001':'!∆', '1010':'L',
'1011':'!^U',
'1100':'R', '1101':'VD', '1110':'V', '1111':'!N'}

logic = []
for i in range(16):
 t = str(bin(i)[2:])
 c = len(t)
 j = 4
 while j<= 4:
 g = 4 - c
 k = t.rjust(j, '0')
 logic.append(k)
 j += 1

test1 = []
for i in logic:
 gg = []
 f = list(i)
 gg.append(f)
 test1.append(f)

colourscales = ['Greys', 'YlGnBu', 'Greens', 'YlOrRd',
'Bluered', 'RdBu','Reds', 'Blues', 'Picnic', 'Rainbow',
'Portland', 'Jet','Hot', 'Blackbody', 'Earth', 'Electric',
'Viridis', 'Cividis']

lg = ['N', '!V', '!VD', '!R', '^U', '!L', '∆', '!^', '^', '!∆', 'L',
'!^U', 'R', 'VD', 'V', '!N']

check = []
balance = []

for f in logic:

 m = list(f)

 blogic = []
 for i in logic:
 for c in logic:
 u = 0
 r = copy.copy(i)
 r0 = list(r)
 while u <= 3:
 if i[u] == '1' and c[u] == '1':
 r0[u] = m[0]
 elif i[u] == '0' and c[u] == '1':
 r0[u] = m[1]
 if i[u] == '1' and c[u] == '0':
 r0[u] = m[2]
 elif i[u] == '0' and c[u] == '0':
 r0[u] = m[3]
 u+=1
 r = ''.join(r0)
 blogic.append(r)

 state = []
 for i in blogic:
 state.append(gates[i])

 states= np.array(state).reshape(16, 16)

 po4=[]
 for i in blogic:
 kk = int(i, 2)
 po4.append(kk)

 po3 = np.array(po4).reshape(16, 16)

 po5 = states.tolist()
 check.append(po5)

O’Neill 5305

 po6 = po3.tolist()
 balance.append(po6)

 fig = ff.create_annotated_heatmap(z = po3, x=lg, y=lg,
annotation_text=states,colorscale=colourscales[10])
 fig.update_layout(title_text=gates[f] + " " + ":" + " " +
"[" + f + "]", title_x=0.5,
 titlefont= {"size": 14},
 font={'color':'black'},
 paper_bgcolor= 'white',
 plot_bgcolor= "white",
 hovermode='closest',)
 fig.show()

