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ABSTRACT 
 
A new method for Logic Gate Arithmetic is proposed allowing sets to be added, subtracted, multiplied, and divided in an 
novel way leading to an alternate and expanded appreciation of the Set Theory. An additional eleven Logic Operators are 
derived from the known operators: AND, OR, NOR, XOR, and XNOR, and their relationships described. Utilizing the 
principles of Dimensional Gate Operators (DGO), the new operators are shown to be directly related to dimensionality, 
both higher and lower, and the relationship to the Quaternions is given preliminary treatment. 
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INTRODUCTION, BACKGROUND, AND 
TERMINOLOGY 
 
Logic Operators are an important part of modern 
Computer Systems and Set Theory. There are six primary 
Logic Gate Operators; AND, OR, NOR, XOR, XNOR, 
and NOT, as they are traditionally perceived. More 
accurately, it can be said that there are only 3 (AND, OR, 
and XOR) with the NOT operator being more of a 
decorator acting on these to create the other 2 (anti-
operators) for a total of 5. 
 
O’Neill (2021) explored the possibility that these Logic 
Operators were incomplete and added 11 more, for a total 
of 16. Approximately seven months after writing this, the 
author became aware of a video by N.J. Wildberger called 
“Implication and 16 logical operations” and realized that 
Wildberger had arrived at the same conception in 2018 
(https://www.youtube.com/watch?v=XkqmuUg_yFs). 
Wildberger claims to have derived his new set of logic 
operations in a formal algebraic sense using the Boolean 
Algebra (Boole, 1847) and proceeds to name a selection 
of them in relation to the Stoic Logic of Modus Ponens 
and others in relation to their own internal properties. 
 
For instance, the Logic or Truth table that corresponds to 
the binary number ‘0000’ (read right to left), he denotes 
as ‘0’ or ‘zero’. It’s counterpart ‘1111’ is therefore ‘1’. 
‘IMP’ stands for implication and OT1 stands for ‘Original 
Term’. 
 
Once a naming convention is in place, it matters little how 
it got there. However, these new logic operators lack 
Boolean Algebra symbols, like ‘^’, ‘V’, ‘∆’, and ‘!∆’ 

(Bocheński, 1948; Roegel, 2002). To counteract this, a 
new naming convention will be outlined in this theoretical 
work. The author developed this method, before realizing 
that Wildberger had already given names to all the logic 
operations. 
 

 
Fig. 1. Wildberger’s 16 Logic Operations, which are 
almost identical to the Logical Connective operators 
which have been in use and development for over a 
hundred years. 
 
In any case, such naming conventions are not too 
concerning, especially in early stage research such as this. 
After all, the XOR and XNOR logic gates are sometimes 
called EOR and ENOR, without much complication, and 
there are numerous variations used for symbols 
throughout the literature, including ‘!’ and ‘¬’ for NOT, 
etc. (Roegel, 2002). 
 
More confusingly, however, is applying the binary 
numbers to the Truth Tables. Binary numbers are usually 
written horizontally, whereas Truth Tables are nearly 
always vertical (see in Appendix 1). When compiling 
Wildberger’s operations into the tables shown in Figure 1, 
it seemed necessary to list the operators, as though their 
binary numbers are being read from ‘right to left’. To 
avoid headaches, it will be necessary to continue with this 
convention. In this paper, all 16 Logic Operators will be 
derived from the original six. 
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Wildberger does not reveal how it was that he developed 
his version of the 16 Logic Operators. But given their 
similarities to the Logical Connectives (Bocheński, 1948), 
as well as Wildberger’s extensive knowledge on the 
subject, it would appear likely he was aware of them in 
advance. Even so, the author is not aware if this would be 
classed as an act of plagiarism, given that the information 
in the form of an online video presentation, as opposed to 
a scientific paper. 
 
More on logic 
The binary numbers ‘0000’ to ‘1111’ can be used to 
represent all 16 of the Dimensional Gate Operators 
(DGO). However, some of these operations don’t appear 
all that logical. To alleviate this concern, the author 
decided to attempt to derive the other eleven operators 
from the original five. 
 

 
Fig. 2. The other two tables: “A rose by any other name?” 
 
The first step is to combine the known logic gates; AND, 
OR, XOR, NAND, XNOR, and NOR to see if they can 
generate any knew terms. XOR can be obtained via the 
OR operator acting on AND and OR: 

((^) V (V)) = ∆ 
 
However, this is obvious and doesn’t lead us out of the 
recursive loop and into the unknown parts of the DGO. 
Similarly, ((^) ^ (V)) = ^. It is easy to see how this 
method will lead us in circles. 
 
Taking a step back and reexamining the Truth Tables for 
these operations, there are clearly two more ‘binary’ 
numbers present in each of the tables. Which are: ‘1010’ 
and ‘1100’. These numbers are equivalent to Wildberger’s 
OT1 and OT2. In terms of Binary Connectives, these are 
known as Proposition P and Q. However, this author 
identified them as RIGHT (or ‘R’) and LEFT (L), as in 
Right and Left Multiplication. Applying the NOR 
operator, !R (NOT RIGHT) and !L (NOT LEFT) are 
easily obtained. From here, we can get to a new Logic 
Operator; ‘0100’, which is made from the combination of 
Δ and !L:  

((∆) ^ (!L)) = 0100 
 
It was called 0100 or ‘^U’ (meaning AND UP), because it 
is similar to ‘^’ (1000) shifted ‘up’ one space. The NOT 
version of this gate is 1011 giving us; ‘!^U’ (NOT AND 
UP). Similarly, !V shifted down one space gives us 0010, 
so this is ‘!VD’ (NOR DOWN).  
 

Therefore, ‘!VD’ is equal to 1101. Once again, the Unary 
Connectives denotes 0010 and 0100, as the NIMP1 and 
NIMP2, which is identical to Wildberger’s notation and 
more indication that his work is at least derivative. 
Together with the NOT versions of these two new Logic 
Operations, we are able to fill 14 of the 16 arrangements 
in the tables shown in Figure 3. 
 

 
Fig. 3. All 16 operations with their names and symbols.  
 
In the process, ‘0000’ and ‘1111’ were named: i.e. “N” 
and “!N” respectively (standing for “NONE” and “NOT 
NONE”). These can equally be written as “NOT ALL” 
(NA) and “ALL” (A). Both ‘None’ and ‘A’ are already 
symbols in the Boolean Algebra, so “NONE” (N) and 
“NOT NONE” (!N) are used instead. Getting to ‘N’ and 
‘!N’ from any of these gates is a simple matter. We only 
need apply one gate together with its NOT version:  

((V) ∆ (!V)) = N 
 
The reverse is given by: 

((!V) ∆ (!V)) = !N 
 
Now all 16 Dimensional Gate Operators and their 
Boolean Algebra symbols are in place, their relationships 
can be further explored and they can be written in terms 
of one another. For example, all these statements are 
TRUE: 

((R) ∆ (L)) = ∆((!N) !∆ (L)) = !L(!VD) !∆ (L) = !^ 
((∆) ^ (!L)) = ^U 

 
This means that the last equation in this list can equally be 
written as follows: 

((R) ∆ (L)) (!(!VD) !∆ !(L)) ((!N) !∆ (L)) = ^U 
 
To make these relations more easily digestible, the author 
took the liberty to organize all this information in the 
following tables shown in Figures 4 to 19 below (the 
Python code to generate these tables is in Appendix 2).  
 

 

Fig. 4. N : [0000].  
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Fig. 5. !V : [0001].  

 
Fig. 6. !VD : [0010]. 
 

 
Fig. 7. !R : [0011].  
 

 
Fig. 8. ^U : [0100].  
 

 
Fig. 9. !L : [0101].  
 

 
Fig. 10. Δ : [0110].  
 

 
Fig. 11. !^ : [0111].  
 

 
Fig. 12. ^ : [1000].  
 

 
Fig. 13. !Δ : [1001].   
 

 
Fig. 14. L : [1010]. 
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Fig. 15. !^U : [1011]. 
 

 
Fig. 16. R : [1100].   
 

 
Fig. 17. VD : [1101].   
 

 
Fig. 18. V : [1110].   
 

 
Fig. 19. !N :[1111].  
 

The basic rules of arithmetic; like addition, subtraction 
and/or multiplication and division can easily be applied to 
these gates. For instance, R Δ L can be rewritten to 
produce ( !^ )) as follows: 
 

R ∆  L = ∆ 
( R ) ∆  ( ∆ ) = (( VD ) ∆ ( !^ )) 

( R ) ∆  ( ∆ ) / (( VD ) ∆ ) = ( !^ ) 
 
Another more convoluted example, this time rewriting 
((∆) ^ (!L)) for (VD) is: 
 

(∆) ^ (!L) = ^U 
((∆) ^ (^U)) V ((∆) V (^U)) = ^U 

!(((∆) ^ (^U)) V ((∆) V (^U))) = !^U 
(!∆)^(!^U) V (!∆)V(!^U)/(!∆) ^ = VD 

 
Later, these methods will be applied to the Set Theory, as 
a whole. 
 
Some notable gates 
In the previous research paper, operators like ∆ (XOR) 
and !∆ (XNOR) were both encountered (O’Neill, 2021). 
Each of these represents the rules of Real Number 
Arithmetic and Complex Arithmetic, according to the 
DGO. This shift in how to do arithmetic transports us 
from the ostensibly 1-2 dimensional lines of the Real 
Numbers and into the 2-3 dimensional realm of the 
‘Complex Plane’. 
 
Unlike the numbers of the Complex Plane, however, there 
are no algebraic numbers here. This is because (–1)1/2 
(the imaginary unit, i) is equal to ±1 in !Δ. Therefore, they 
are simply the ordinary numbers with a different 
arithmetic rule set. The reader might be tempted to think 
that Δ also governs the rules of the Quaternions and 
Octonions (Hamilton, 2000). However, this is not the 
case.  
 
One important feature of the Quaternions is that they are 
non-commutative; that is A(B) =/= B(A). This attribute is 
seen in the DGO in places like !VD, !R, !^U, and VD, 
where A(-B) =/= B(-A). Quaternions are governed by a 
mix of !VD and ^U logic, because they are non-
commutative for different signed quaternions, whilst 
retaining the !Δ rule set of the imaginary numbers, when 
the signed values for i, j, k are the same: 

 
i2 = j2 = k2 = – 1 

ij = k, ji= – k 
jk = i, kj = – i 
ki = j, ik = – j 

 
The Quaternions are made from two groups of !VD and 
one of ^U. This asymmetry allows for the loop to be 
closed and further explains why these higher-dimensional 
algebras can only be order 2n. Below there are three tables 
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that correspond to the following (left to right): ∆, ^U, and 
!VD. 
 

 
 
Dimensional spaces 
Returning to Figures 4 to 19 (i.e. sets 0 to 15), it is 
apparent all of them can fit together like jigsaw pieces. 
For instance, it is clear that Figures 5, 6, 8, and 12 (i.e. 
sets 1, 2, 4, and 8) form a set that can be called ‘Set B’. 
Similarly, we can make ‘Set C’ from Figures 11, 15, 17, 
and 18 (i.e. sets 7, 11, 13, and 14). The horizontal and 
vertical lines appear to make another set, ‘Set D’ (Figures 
7, 9, 14, and 16). That just leaves the final four graphs: 
Figures 4, 10, 13, and 19, namely set {0, 6, 9, 15} or ‘Set 
A’. All the sets are shown schematically in Figure 20. 
There is a distinct pattern emerging in how these sets are 
dispersed across the entire binary number line, here 
represented in their decimal form. 
 

 
Fig. 20. All four sets: A (blue numbers), B (red), C 
(green), and D (black). This pattern explains the 
frequency of the NOT values, as they are represented in 
the DGO. 
 
The first composite graph (Figure 21) shows the domains 
of N (in the bottom left-hand corner), ∆ immediately 
above that, !∆ in the lower righthand corner, and !N in the 
top right. What matters here is not the order, so much, as 
the grouping and what it reveals about the connectivity of 
the Logical Connective space. Set A can be rewritten as 
{N, ∆, !∆, !N}, which stands for the paths between 
Dimensions 0, 2, 3, and 1, respectively. To understand 
this, look at our Quaternion logic gates: ^U and !VD. 
Figure 22 shows Set B.   
 

 
Fig. 21. Set A = {0, 6, 9, 15} or A = {N, ∆, !∆, !N}.  
 

 
Fig. 22. Set B = {1, 2, 4, 8} or B = {!^, !^U, !VD, !V}.  
 
If we multiply these terms by ¬Δ (the Imaginary rule set) 
we obtain (!VD) ¬Δ (!^U) = Δ (our Real number logic). 
This shows the path by which Quaternions collapse down 
into the rule set of both the Imaginary and Real numbered 
spaces of dimensions 2-3. We can then continue this 
process, in the usual manner, multiplying (Δ) !Δ (!Δ) and 
(Δ) Δ (!Δ) to obtain the dimensions beneath them as 
follows: 

(∆) !∆ (!∆) = N 
(∆) ∆ (!∆) = !N 

 
One possible conclusion is that N and !N refer to 
dimensions 0 and 1, respectively. In this sense, the Real 
Numbers and Imaginary Numbers live in Set A, along 
with dimensions 1 and 0. Whereas the Quaternions live 
jointly in Sets B and C, along with some other more 
traditional logic gates. The Octonions, Sedenions, and 
(potentially) other higher dimensional spaces exist 
scattered among the other sets, although this is something 
that must be investigated further. 
 
While this way of thinking about logic gates can provide a 
method for travelling from one rule set (i.e. dimensional 
space) to the other, it should not be taken too literally. In 
one sense, applying the ∆ or !∆ rule set to the Quaternions 
does not lead to ∆ or !∆ but rather to hybrid spaces; the 
Real Quaternions and the Imaginary Quaternions, and 
neither of these two systems cancel out to Dimension 0 
when summed in ∆. More on this in up-coming research.  
 

 
Fig. 23. Set C = {7, 11, 13, 14} or C = {V, VD, ^U, ^}.  
 
Based on the arrangements of the graphs in Figure 21, it is 
possible to see the placement beginning in the lower left-
hand corner and proceeding in a zigzag fashion to the 
upper-right. The graphs in Figure 22 go in the reverse 
direction and the pattern is repeated in the next two 
graphs in Figures 23 and 24. 
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Fig. 24. Set D = {3, 5, 10, 12} or D = {!R, !L, L, R}.  
 
Using the pattern of Figure 21 as the ‘base arrangement’, 
Figures 21, 22, 23, and 24 can be arranged into a single 
graph (Figs. 25, 26, and 27). But note there are 16! 
possible arrangements, so care must be taken when 
choosing an arrangement. 
 

 
Fig. 25. The preliminary grouping of the sets.  
 

 
Fig. 26. The final grouping. 
 

 
Fig. 27. A more tiled version of Figure 26. 
 
It can be deduced from the lack of connectivity between 
the different regions that a more accurate arrangement is 
possible. We shouldn’t expect to see such harsh 
delineating lines from the interrelated sets. Earlier it was 
stated that the Quaternions and the Imaginary Quaternions 
follow the rules laid out in Set B, while the Real 
Quaternions are sitting in Set C, which obviously cannot 
be right. If the Real Quaternions are moved into Set B 
with the other Quaternions, this forces all the commonly 

known logic gates: ^, !^, V, and !V together, which is a 
much neater result.  
 
Moreover, there is a much greater connectivity between 
the different regions. Given that this has served as a 
useful vehicle to explain some of the relationships 
between the Reals, Imaginary, Quaternions, and Logic 
Gates, it may be worthwhile exploring this line of inquiry 
further.  
 
Set Theory Arithmetic  
It is possible (at least in principle) to divide and multiply 
set operators together. And it is also possible to apply 
these kinds of operations to the actual sets of Set Theory. 
Unlike traditional methods of arithmetic with sets, where 
(for instance) the elements of one set are divided into 
another, here the operators acting on the sets will be 
divided. 
 
Using the DGO methods on Set Theory will advance new 
ways to get from one partition of a group of sets to 
another and will lead to operations, which were not 
previously possible under the former laws of the Boolean 
Algebra.  
 
To begin with, it is not clear why this should this be so. 
After all, the current operators already cover all aspects 
and combinations of Set Theory. But when it is recalled 
that the !VD operator governs the arithmetic of the 
quaternions, this portends the possibility of doing Set 
Theory in higher order dimensions.  
 
Quaternions are known to be indispensable for describing 
some aspects of Quantum Mechanics, and these extra 
Logic Gates simply extend the number of dimensions 
available to work with. This also forms the basis of the 
Dimensional Gate Operator Standard Model, which is 
further developed in (C. O’Neill, “Dimensional Gate 
Quaternion Multiplication, Quarks & Polyhedra” DOI: 
10.13140/RG.2.2.22968.57601/1; “Construction of the 
2nd and 3rd Generation Quark Particles in the Standard 
Model” DOI: 10.13140/RG.2.2.20228.35202, as well as 
the overview: “Making Sense of the Standard Model” 
DOI: 10.13140/RG.2.2.34132.12163/1). Essentially, these 
operators can be used to describe sets of these particles 
via the rules of the 4-dimensional space (4D space) in 
which they live. Alternatively, 4D Set Theory might find 
application in the perplexing world of Quantum 
Computing, where a bit can be a ‘1’ and ‘0’ at the same 
time. 
 
To begin with, a simple example with sets A and B is as 
follows: 
 

(A ∆ B) ^ (A !L B) = (A ^U B) 
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This operation would correspond with the following Venn 
Diagrams:  
 

 
and equals to: 

 
A slightly more complex operation would be the 
following: 
 

(A R B) ∆ (A !∆ B) / (!VD)!∆ = (A !V B) 
 

 
 
This equals to 
 

 
 
An important aspect of the above two equations is they 
both feature noncommutative logic gates, specifically: !L, 
R, and !VD. This means that different outcomes for the 
equation would be expected depending on which set we 
choose to be on the right and which appears on the left. 
 
Since sets have no orientation in space and since either 
one can be on the ‘left’ or on the ‘right’, this poses 
something of a problem, especially as the set arithmetic 
moves into higher dimensions. Or at least it would be a 
problem, if it were expected to form a closed space 
algebra, but as we shall see in the follow-up preprints and 
research papers, creating closed field algebras might not 
always be the best approach.  
 
CONCLUSION  
 
The Dimensional Logic Gate Operators have the potential 
for some very unusual and unexpected applications. They 
can find application in computer circuitry, set theory, and 
Boolean algebra, as well as Quantum Computing, 4-
dimensional (and higher) Set Theory, and Set Theory 
Arithmetic. 
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Appendix 1.  
 
The 16 tables. 
 

 
Fig. A1.1. From top left: N, !V, !VD, !R, ^U, !L, ∆, !^, ^, 
!∆, L, !^U, R, VD, V, !N. The colour-coding here pertains 
to the different sets: A = Red, B = Green, C = Blue, and D 
= Yellow. The Quaternions are created from !VD and ^U 
and the Real Quaternions are created from !^U and VD. 
 
Appendix 2.  
The Python codes for the generation of Figures 4 to 19. 
 
import plotly 
import  plotly.graph_objs as go 
import plotly.figure_factory as ff 
import numpy as np 
import copy 
 
gates = {'0000':'N', '0001':'!V', '0010':'!VD', '0011':'!R', 
'0100':'^U', '0101':'!L',  
'0110':'∆', '0111':'!^', '1000':'^', '1001':'!∆', '1010':'L', 
'1011':'!^U',  
'1100':'R', '1101':'VD', '1110':'V', '1111':'!N'} 
 
logic = [] 
for i in range(16): 
    t = str(bin(i)[2:]) 
    c = len(t) 
    j = 4 
    while j<= 4: 
        g = 4 - c 
        k = t.rjust(j, '0') 
        logic.append(k) 
        j += 1 

test1 = [] 
for i in logic: 
    gg = [] 
    f = list(i) 
    gg.append(f) 
    test1.append(f) 
 
colourscales = ['Greys', 'YlGnBu', 'Greens', 'YlOrRd', 
'Bluered', 'RdBu','Reds', 'Blues', 'Picnic', 'Rainbow', 
'Portland', 'Jet','Hot', 'Blackbody', 'Earth', 'Electric', 
'Viridis', 'Cividis'] 
 
lg = ['N', '!V', '!VD', '!R', '^U', '!L', '∆', '!^', '^', '!∆', 'L', 
'!^U', 'R', 'VD', 'V', '!N'] 
 
check = [] 
balance = [] 
 
for f in logic: 
 
    m = list(f) 
 
    blogic = [] 
    for i in logic: 
        for c in logic: 
            u = 0 
            r = copy.copy(i) 
            r0 = list(r) 
            while u <= 3: 
                if i[u] == '1' and c[u] == '1': 
                    r0[u] = m[0] 
                elif i[u] == '0' and c[u] == '1': 
                    r0[u] = m[1] 
                if i[u] == '1' and c[u] == '0': 
                    r0[u] = m[2] 
                elif i[u] == '0' and c[u] == '0': 
                    r0[u] = m[3] 
                u+=1 
            r = ''.join(r0) 
            blogic.append(r) 
 
    state = [] 
    for i in blogic: 
        state.append(gates[i]) 
 
    states= np.array(state).reshape(16, 16) 
 
 
    po4=[] 
    for i in blogic: 
        kk = int(i, 2) 
        po4.append(kk) 
 
    po3 = np.array(po4).reshape(16, 16) 
 
    po5 = states.tolist() 
    check.append(po5) 
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    po6 = po3.tolist() 
    balance.append(po6) 
 
    fig = ff.create_annotated_heatmap(z = po3, x=lg, y=lg, 
annotation_text=states,colorscale=colourscales[10]) 
    fig.update_layout(title_text=gates[f] + " " + ":" + " " + 
"[" + f + "]", title_x=0.5, 
                titlefont= {"size": 14}, 
                  font={'color':'black'}, 
                  paper_bgcolor= 'white', 
                  plot_bgcolor= "white", 
                  hovermode='closest',) 
    fig.show() 
 
 


